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ABSTRACT
In this paper, we present an optimization model

which incorporates uncertainty induced by geomet-
rical imperfections. Within the model, geometrical
imperfections are represented by means of random
fields. The induced uncertainties are then treated
using the concept of a convex model. The resultant
problem is then solved in a two stage optimization
procedure. An arched girder is used to demonstrate
the capabilities of the proposed approach.

NOMENCLATURE

x ∈ Rn design vector
f0 objective function
f1 . . . fm constraint functions
y ∈ Rq vector of imperfection variables
h imperfection shape
rp(t,x) perfect system curve
ri(t,x,y) imperfect system curve
Cov[·, ·] covariance of two random numbers
b correlation length
BZ covariance matrix of discretized

random field
BẐ covariance matrix of discretized

random field with constraints
Sy convex set of allowed imperfection

vectors
ui(x,y) structural response quantity
vi(x) structural response for

controlling imperfection shape

INTRODUCTION
Today, optimization methods have proven to be

a powerful tool for the design of complex structures
in civil-engineering. However, the performance of
the optimized structure in real conditions depends
essentially on the quality of themodel used for opti-
mization. This holds particularly for the optimiza-
tion of slender structures subjected to compressive

stresses. Using conventional models, optimization
of this type of structures is prone to generate de-
signs that are highly sensitive to geometrical im-
perfections [1]. Therefore it is crucial to develop
an optimization methodology which leads to results
which behave reliable within a specified range of
imperfection shapes.
In structural optimization the underlying design

problem is formulated as a mathematical optimiza-
tion problem. The scalar valued continuous opti-
mization problem takes the form

min
x
f0(x) with x ∈ S ⊆ Rn (1)

where x is the n-dimensional design vector and
f0 the objective function. The set S denotes the
feasible domain and is defined by

S = {x | x ∈ Rn, fi(x) ≤ 0, i = 1, . . . ,m} .
(2)

The m functions f1, . . . , fm are called constraint
functions and contain the requirements the struc-
tural design has to fulfill. In the following, the
m + 1 functions f0, . . . , fm will be collectively
called problem functions. Problem functions are
set up by means of a computer based optimization
model such that the relevant aspects of the design
problem are covered. As noted above, for slender
structures imperfections and stability behavior is a
governing aspect. In the following, an appropriate
optimization model is presented.
The next section deals with the elements and

the general structure of the model. Then, the ap-
proach to the description of the imperfect geometry
of the structure is presented. This includes the
geometry to be optimized as well as a model of
geometrical imperfections. The chosen approach
to the treatment of the uncertainties induced by the
imperfections is dealt with, subsequently. Finally,
an arched girder as an instance of a complex engi-
neering structure is optimized.
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OPTIMIZATION MODEL
The developed optimization model consists of

four interacting sub-models: (i) The geometry
model realizes the dependency of the structural
variables from the design vector x ∈ Rn. The
possible deviations from the idealized geometry, as
described by the imperfection vector y ∈ Rq, are
described in (ii) the imperfection model. Together
these two form themodel of the imperfect geometry
which describes (iii) the analysismodel bymeans of
the structural variables z ∈ RN . In order to capture
the stability behavior correctly a geometrical non-
linear analysis is necessary. Despite the uncertain-
ties present in the model, unambiguous statements
about the overall structural performance have to be
made. This is done in the (iv) uncertainty model.
Based upon the output of the uncertainty model the
values of the problem functions f0(x), . . . , fm(x)
are computed. Figure 1 shows the total model.
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Figure 1: Structure of the Optimization Model

GEOMETRY DESCRIPTION
For the geometry model, a relation between the

perfect and the imperfect geometry is needed. This
relation is given by the imperfection shape hwhich
assigns to each point of the perfect structure Xp a
deviation h(Θ,x,y) as shown in Figure 2.

Perfect geometry Imperfect geometry

Imperfection shape Xi (θ,x,y)Xp (θ,x)
h (θ,x,y)

X1

X2

Figure 2: Imperfection shape

The design of the geometry model has two
goals: (i) an efficient representation of the struc-
ture by only a few optimization variables and (ii)
the option to integrate an imperfection model.
The starting point for the geometry model is a

so called basis element which represents the overall
shape of the structure. This basis element is a curve
for one dimensional structures, like curved beams
or arches, and a surface for two dimensional struc-
tures like shells or grid shells. This basis element
is represented by means of NURBS [2] which are
widely used in computer aided geometric design.
Along with the imperfection model the imperfect
basis element is defined which then serves as refer-
ence frame for the definition of a so called relative
geometry. Finally, the relative geometry defines
the coordinates of the finite element nodes. The de-
scribed scheme is illustrated in Figure 3 and applied
to one dimensional structures in the next section.
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Figure 3: Geometry description

One dimensional structures. The basis ele-
ment of one dimensional structures is the system
curve

rp(t) = [rp1(t), rp2(t), rp3(t)]T (3)

which is marked as perfect by the superscript p.
Hereby rp is a NURBS of which the control points
and weights are linked to the according entries of
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the design vector x. For the sake of a compact
notation, this dependency is not included in (3). A
trihedron having the base vectors ep1(t), ep2(t) and
ep3(t) and following the perfect basis element is de-
fined. In the case of one dimensional structures,
the imperfection shape depends only on the curve
parameter t and has two components:

h(t) = [h1(t), h2(t)]T . (4)

Again, the dependency of h(t) from x and y is not
explicitly noted.

ri(t)

rp(t)

ep
1(t)

ep
2(t)

pe3(t)

h1(t)

h2(t)

Perfect basis element

Imperfect basis element

Figure 4: System curve

In accordance to Figure 4, the imperfect system
curve yields to

ri(t) = rp(t) + h1(t) · ep2(t) + h2(t) · ep3(t). (5)

Then again, a following trihedron is attached to the
imperfect system curve. This trihedron serves as a
reference frame for the relative geometry. Here the
remaining dimensions of the system are again de-
scribed by NURBS. The final results are the curves
on which the nodes of the finite element model are
located.
The generalization of the concept to two dimen-

sional systems (shells or grid shells) is straightfor-
ward and can e.g. be found in [3].

GEOMETRICAL IMPERFECTIONS
Geometrical imperfections can be interpreted

as a phenomena of random nature. Nevertheless,
the fluctuations at two different points are not com-
pletely independent rather they are coupled stochas-
tically over their distance.
For the modeling of such spatially varying ran-

dom quantities the concept of random fields [4] is
well suited. An application of random fields to
geometrical imperfections is given in [5].

Scalar Random Fields
Within this paper, the scope is on scalar valued

random fields but an extension to vectorial random
fields is straightforward.
A scalar random field H assigns to each point

x within the considered domainD ⊆ R3 a random

number H(x). A realization h of the random field
H is a function which assigns a number h(x) to
each point x. Applying this concept, the properties
of a random field can be stated.

Properties of Random Fields. In each point, a
scalar random field has a distribution function

FH(h(x)) = P [H(x) ≤ h(x)]. (6)

Moreover, the mean value function

mH(x) = E[H(x)] (7)

gives the expected value of the random field at each
point while the covariance function

BH(x1,x2) = Cov[H(x1),H(x2)] (8)

captures the stochastic coupling of the fluctuations
of two arbitrary points.

Modeling decisions. When random fields are
employed to model real world phenomena, the
properties introduced above have to be adequately
identified. Usually, geometrical imperfections do
not show a preferred direction and an accumulation
around the perfect geometry has to be expected.
Therefore, in this work the random field is Gaus-
sian, having a mean value of zero. In addition
a homogenous correlation structure is used. This
means that the value of the covariance function de-
pends only on the relative position of two points.
The covariance function thus depends on a scalar
parameter ξ = ξ(x1,x2) which reflects the metric
of the considered domain. Using such assumptions
and an inverse exponential correlation function, the
covariance function writes as

BH(ξ) = σ2e−ξ/b (9)

where σ is the standard deviation and b is called
correlation length.

Discretization
For the implementation in a computer program,

the above continuous formulation has to be dis-
cretized. For that, the random field is considered at
discrete points. The original random field is then
represented by a vector of random numbers

Z = [H(x1), . . . ,H(xp)]T (10)

in which p is the number of discretization points.
The covariance matrix of Z is computed by means
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of the covariance function (8) and is

BZ =

 BH(x1,x1) . . . BH(x1,xp)
...

. . .
...

BH(xp,x1) . . . BH(xp,xp)

 .
Because of the symmetry of the covariance func-
tion, the covariance matrix is symmetric and, as can
be easily shown, positive definite.

Constrained Random Fields
Often it is necessary to take into account the

constructive design of the system. For instance, in
many cases one can ensure vanishing variances at
the supports of a structure. In such a situation, the
imperfection shape is represented by a new random
vector Ẑ having an adapted covariance matrix. For
Gaussian random fields, this can be accomplished
on the basis of a stochastic interpolation procedure
[6]. Let x̂1, . . . , x̂r be the points for which the
variance is known to disappear. Then, using the
matrices

C =

 BH(x1, x̂1) . . . BH(x1, x̂r)
...

. . .
...

BH(xp, x̂1) . . . BH(xp, x̂r)


and

D =

 BH(x̂1, x̂1) . . . BH(x1, x̂r)
...

. . .
...

BH(x̂r, x̂1) . . . BH(x̂r, x̂r)


the adapted covariance matrix yields to

BẐ = BZ −C D−1CT . (11)

Figure 5 shows qualitatively the covariance matrix
of a linear one dimensional random field. The left
picture shows the original covariance matrix and
the right picture the covariance matrix of the ran-
dom field constrained at both ends.

Unconstrained random field
i

j

BZ
ij

Constrained random field
i

j

BẐ
ij

Figure 5: Covariance matrices

Transformation in the Uncorrelated Space
Because the covariance function (9) takes pos-

itive values for each x ∈ D, the covariance matrix

BẐ has only non zero entries such that the random
vector Ẑ is fully correlated. For the treatment of the
random field in the uncertainty model, it is neces-
sary to represent the random vector Ẑ in terms of a
new random vector Y which has more convenient
properties.
Therefore, a set of base vectors a1, . . . ,aq

which are collected in the matrix A ∈ Rp−r×q
is introduced. The random vector Ẑ is then repre-
sented by the linear combination

Ẑ = a1Y1 + · · ·+ anYn = AY. (12)

The covariance matrices of Ẑ andY are connected
by the set of base vectorsA through the relation

BẐ = ABY AT (13)

which can be found by inserting the linear combina-
tion (12) in thewell known definition of covariance.
The next step is to choose the matrixA. This is

done by applying a spectral decomposition onBẐ .
Since BẐ is positive definite, it can be written as

BẐ = Q
√

ΛI
√

ΛQT . (14)

where Q is the matrix formed by the eigenvectors
qi of BẐ and Λ is a diagonal matrix containing
the corresponding eigenvalues. The comparison of
(13) and (14) yields that, if

A = Q
√

Λ, (15)

thenBY is the identity matrix I. Thus, by employ-
ing the basis (15), the imperfection shape is repre-
sented by a linear combination of deterministic base
vectors scaled by their probabilistic weights and un-
correlated uniformly distributed random numbers.
Figure 6 shows the first five base vectors for a

one dimensional random field of length one with
σ = 1 and b = 0.5. The left picture corresponds
to an unconstrained random field while the right
picture shows the base vectors of a random field
having a vanishing variability at both ends. It is
clearly visible that the amplitude of the base vec-
tors decreases as their variability increases.

MODELING OF THE UNCERTAINTY
Themodel of the geometrical imperfections pre-

sented introduces a substantial amount of uncer-
tainty in the structure. Following Elishakoff [7],
there existmainly three approaches to handle uncer-
tainty in structural analysis: (i) the classical prob-
abilistic approach in which one aims for failure
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Figure 6: Base vectors of a one dimensional random field

probabilities, (ii) the option to represent uncertain
parameters as fuzzy sets and (iii) convex models
of uncertainty. In addition, the concept of fuzzy-
randomness introduced recently [8] is an approach
which includes both probabilistic and fuzzy con-
cepts.
Since the model of the geometrical imperfec-

tions has a probabilistic foundation, the fuzzy ap-
proach is not necessary. The probabilistic approach
has the disadvantage of being potentially numeri-
cally expensive and requiring extensive knowledge
of the stochastic properties of the uncertain param-
eters. Especially the latter argument is essential,
because for the imperfections of complex struc-
tures it is difficult to aquire sufficient knowledge
about probability distributions. For this reasons, a
convex model of geometrical imperfections based
upon the above imperfection model is presented.

Convex Modeling
The idea of convex models, which goes back

to Ben-Haim and Elishakoff [9], is based upon the
assumption of unknown but bounded uncertain pa-
rameters. For that, a subset of possible parameters
Sy is defined which has the property of being con-
vex.
The authoritative structural response vi(x) is

then the worst structural response for all uncertain
parameters contained in the set Sy . This condition
is formulated as the optimization problem

vi(x) = max
y

ui(x,y) with y ∈ Sy (16)

which can be solved using existing optimization
software. Since (16) denotes the search for the
worst structural response, convex modeling is of-
ten associated with the term anti-optimization.
The next question is, how to choose the convex

set Sy such that the original probabilistic properties

of the random vectorY are appropriately captured.
Since the entries ofY are normally distributed ran-
dom numbers, the convex set has to be invariant
against rotations of the coordinate system. This
requirement is fulfilled by the set

Sy = {y ∈ Rq | ‖y‖ ≤ ε}, (17)

which represents a q-dimensional ball. The radius
ε of the ball is therefore the parameter governing
this convex model. The basis for the parameter ε
is the characteristic amplitude of the imperfection
shape hsp.
The value hsp is chosen according to [10] from

the 95% fractile of all imperfection shapes. Ac-
cording to Figure 7, the radius then becomes

ε =
√
q hsp, (18)

where q is the number of imperfection variables.

ε

hsp

hsp

y1

y2

Sy

Figure 7: Characteristic amplitude hsp and radius ε

Formulation as an unconstrained problem
Because of the specific structure of the convex

set (17) it is possible to transform the constrained
optimization problem (16) into an unconstrained
one. This is carried out by means of a projection.
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Using the new vector of imperfection variables

ŷ = [ŷ1, . . . , ŷq+1]T (19)

the projection ψ : Rq+1 → R
q

ψ(ŷ) =
ε

‖ŷ‖

 ŷ1

...
ŷq

 (20)

is defined. The domain of ψ is exactly Sy and

ψ(ŷ) ∈ Sy ∀ ŷ ∈ Rq+1 (21)

holds. In eq. (19), the entry ŷq+1 can be interpreted
as a slack variable, which allows the representation
of interior points of Sy . Using the relation (21)
and û(x, ŷ) = u(x,ψ(ŷ)) the constrained anti-
optimization problem (16) can be written as

vi(x) = max
ŷ

û(x, ŷ) mit ŷ ∈ Rq+1 (22)

which represents an unconstrained problem.

Derivatives
The optimization algorithms employed in this

work need the derivatives of the problems functions
with respect to the design variables. Consequently,
the derivatives of theworst structural responses (22)
have to be computed.
Based upon the condition (22), a functional de-

pendency amongst ŷ and x is formulated:

ŷ = ŷ(x) (23)

and the relation

vi(x) = ûi(x, ŷ(x)) (24)

can be stated. Using the chain rule of differentia-
tion, the partial derivatives of (24) yields

∂vi
∂xj

(x) =
∂ûi
∂xj

(x, ŷ(x))

+ (∇ŷûi (x, ŷ (x)))T
∂ŷ
∂xj

(x).
(25)

On the other hand, the gradient

∇ŷû(x, ŷ) = 0 (26)

must vanish due to the necessary condition for the
solution of problem (22). Therefore, using ŷ?, the
result

∂vi
∂xj

(x) =
∂ûi
∂xj

(x, ŷ?) (27)

is obtained. This is crucial for two reasons: (i)
the convex modeling, as performed here, does not
influence the C1 continuity of the problem func-
tions and (ii) the anti optimization problem does
not have to be solved in the perturbation steps of
the numerical sensitivity analysis.

Algorithm
The solution of the overall optimization prob-

lem requires a procedure which comprises two
nested optimization loops. In the outer loop, the
optimization of structure is carried out. In the in-
ner loop, the worst combination of the imperfection
variables for the requested response quantity is de-
termined.
In defining the solution algorithm, a distinction

is required between response quantities which de-
pend on the imperfection variables (e.g. stresses)
and those which do not (e.g. weight). Let

I1 = {i | ui = ui(x), i = 1, . . . ,M} (28)

denote the indices of response quantities indepen-
dent of y and

I2 = {i | ui = ui(x,y), i = 1, . . . ,M} (29)

those which depend on the imperfection shape.
The overall procedure is depicted in Figure 8

using a Nassi-Schneiderman notation. Obviously,
the required computational effort depends mostly
on the number of elements contained in the set I2.

i = 0, xi = x0

while xi �= x�

foreach j ∈ I1

vi
j = uj(x

i)

foreach j ∈ I2

k = 0, yk = y0

while yk �= y�

uk
j = uj(x

i,yk)

yk+1 = opt(uk
j )

k = k + 1

vi
j = uk

j

xi+1 = opt(fi
0, . . . , f i

m)

i = i + 1

Optimization

Anti-Optimization

Figure 8: Solution algorithm
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APPLICATION EXAMPLE
In this section, the optimization model de-

scribed above is applied exemplarily to an arched
girder shown in Figure 10 subjected to a con-
stant area load on the roof area. The material
for the structure is steel, the modulus of elas-
ticity is E = 2.1 · 105 N/mm2 and the density
ρ = 7850 kg/m3. The structural model consists of
77 nodes and 209 truss elements having a circu-
lar cross section (tubes). The weight of the initial
structure is 41,022 kg.
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Figure 10: Arched girder: initial design

Geometrical imperfections are modeled by
means of a random field. Since the structure is

spatial, the random field implies two components
each of which is described by ten imperfection vari-
ables. The random field has an inverse-exponential
correlation function. At the two supports, no ran-
dom deviations are assumed. The parameters of the
imperfection model are collected in Table 1.

Table 1: Parameters of the Imperfection Model
standard deviation σ = 0.2 m
correlation length b = 600 m
radius of ball ε = 8.85
number of imperfection variables q = 20

Within the geometry model, the structure is de-
scribed by 21 optimization variables. Five opti-
mization variables refer to the wall thicknesses of
the cross sections and 16 variables describe the ge-
ometry of the structure. As the objective function,
the strain energy stored in the deformed system
is used. The optimization is subject to two con-
straints, (i) the weight of the structure must not
exceed 41,300 kg and (ii) the total height of the
system is restricted to 40 m.

Table 2: Objective Function
Initial Design Best Design
(kNm) (%) (kNm) (%)

Perf. 2134.58 100.00 1100.08 51.54
Imp. 2412.40 113.02 1162.96 54.48
Diff. 277.82 13.02 62.88 2.95

The optimization is carried out using the SQP
algorithm [11]. A comparison of the initial and the
optimized structure is given in Table 2. Of spe-
cial interest is the comparison of the strain energy
for the perfect configuration (Perf.) and the worst
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Initial design

Optimized design

Figure 11: Optimized Structure

imperfection shape (Imp.). Obviously, the increase
in strain energy is much smaller for the optimized
structure compared to the initial design. This is
visible also in the optimization history shown in
Figure 9 where the lower line belongs to the search
for the worst imperfection shape carried out in each
iteration step of the main optimization loop. The
layout of the optimized structure is shown in Fig-
ure 11.

CONCLUSIONS
The optimization of structural systems with un-

certainties induced by geometrical imperfections
has been formulated. The presented model com-
prises a NURBS based geometry description, ran-
dom fields for the modelling of geometrical imper-
fections, a nonlinear finite element analysis and a
convex model of uncertainty.
As an instance of a complex engineering struc-

ture an arched girder has been optimized. The
results achieved show that the proposed approach
yields a structural design which is significantly less
imperfection-sensitive than the initial design.
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